This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title \sim content=t713926090

The angle of twist between the two phenyl rings in the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl

G. Celebrea; M. Longeria; E. Sicilia ${ }^{\text {a }}$; J. W. Emsley ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Chimica, Universita della, Calabria, Italy ${ }^{\text {b }}$ Department of Chemistry, University of Southampton, Southampton, England

To cite this Article Celebre, G., Longeri, M. , Sicilia, E. and Emsley, J. W.(1990) 'The angle of twist between the two phenyl rings in the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl', Liquid Crystals, 7: 5, $731-737$
To link to this Article: DOI: 10.1080/02678299008036754
URL: http://dx.doi.org/10.1080/02678299008036754

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The angle of twist between the two phenyl rings in the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl

by G. CELEBRE, M. LONGERI and E. SICILIA
Dipartimento di Chimica, Universita della Calabria, Italy
and J. W. EMSLEY
Department of Chemistry, University of Southampton, Southampton SO9 5NH, England

(Received 30 November 1989; accepted 19 January 1990)
The NMR spectrum of the protons in the biphenyl group of 4-n-pentyl-4'cyanobiphenyl (5CB), was obtained by Sinton et al. (1984, Molec. Phys., 53, 333) and analysed by them to give an angle of twist, $\phi_{\min }$, between the normals to the two phenyl rings of $30 \pm 2^{\circ}$. Their analysis made the assumption that $V(\phi)$, the potential for rotation about the inter ring bond, is such that only the structures with the minimum energy need be considered when calculating averaged dipolar couplings. Re-analysis of their data by a method which allows for the whole of $V(\phi)$ to be sampled when averaging the dipolar couplings yields a value for $\phi_{\min }$ of $38 \cdot 4 \pm 0 \cdot 1^{\circ}$.

1. Introduction

Both 4-n-alkyl- (NCB) and 4-n-alkyloxy- (NOCB) substituted 4'-cyanobiphenyls form liquid crystal phases, which are the focus of many studies which attempt to relate mesophase stability with molecular structure. This is mainly because of their importance as the active components of many electro-optic displays, but also because of their relatively simple structures. It is intriguing too that their aromatic core is a substituted biphenyl, since biphenyl itself is unusual in having a planar structure in the solid state [1], whilst having a minimum in $V(\phi)$, the potential energy as a function of the inter-ring angle ϕ, at about 44° in the gas phase [2]. The values of $V\left(0^{\circ}\right)$ and $V\left(90^{\circ}\right)$, which are maxima in $V(\phi)$, have also been determined from an electron diffraction study of a gaseous sample [2] to be 6.0 and $6.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. These refer to isolated molecules, and it is possible, therefore, that in a condensed fluid phase the barriers may be considerably different, and that $V(\phi)$ may have a minimum at or close to zero. This indeed was the conclusion reached by a study of the NCB series, both as solutes in carbon tetrachloride, and in the solid state, by infrared and Raman spectroscopy [3]. The conclusions reached by Proutiere, Legoff and Chabanel [3] were that the minimum in $V(\phi)$ is close to $\phi=0^{\circ}$ for $N=0-12$ in the carbon tetrachloride solutions, whereas $\phi_{\text {min }}$ appears to change in the solid state from being zero in 4 -cyanobiphenyl (i.e. $N=0$) to about 40° in 3 CB and 4 CB . The purpose of this present communication is to point out, however, that the value of $\phi_{\text {min }}$ can be obtained with high precision from the dipolar couplings which can be determined from the proton NMR spectrum of a liquid-crystalline sample [4]. One such study, that by Pines and his colleagues [4] has been reported for 5CB and they concluded that $\phi_{\min }=30 \pm 2^{\circ}$. The difference between $\phi_{\text {min }}$ determined by the NMR method, and
which is for a nematic sample, and that derived from the infrared and Raman data, which are for an isotropic solution, is hard to reconcile, since it implies an unusually large change in $V(\phi)$ with solvent and phase. In order to determine $\phi_{\text {min }}$ from the dipolar couplings Sinton et al. [4] made the assumption that only the structures corresponding to the energy minima need be considered, which we shall refer to as the rotational isomeric state (RIS) model. The use of this assumption can be expected to affect the value derived for $V(\phi)$, and we present here a re-analysis of the NMR data which averages the dipolar couplings over the whole potential energy path for rotation about the inter-ring bond.

Our approach is that introduced by Emsley and Luckhurst [5], in which the partially averaged dipolar couplings, $D_{i j}$, are related to conformationally dependent order parameters, $S_{\alpha \beta}$, the probability distribution $p(\phi)$, and the dipolar tensor elements $D_{i j \alpha \beta}(\phi)$ by [5]

$$
\begin{equation*}
D_{i j}=(2 / 3) \sum \int p(\phi) S_{\alpha \beta}(\phi) D_{i j \alpha \beta}(\phi) . \tag{1}
\end{equation*}
$$

The ϕ dependence of the dipolar coupling tensor is determined by the geometry, so that the major unknown factors are $p(\phi)$ and $S_{\alpha \beta}(\phi)$.

The conformationally dependent order parameters $S_{\alpha \beta}(\phi)$ are determined by the nature of a ϕ dependent potential of mean torque $U_{\text {ext }}(\phi, \beta, \gamma)$,

$$
\begin{equation*}
U_{\mathrm{ex1}}(\phi, \beta, \gamma)=-\varepsilon_{2,0}(\phi) C_{2,0}(\beta, \gamma)-2 \varepsilon_{2,2}(\phi) C_{2,2}(\beta, \gamma), \tag{2}
\end{equation*}
$$

where the $C_{2, m}(\beta, \gamma)$ are reduced spherical harmonics. The angles β and γ are the polar angles made by the director of the uniaxial mesophase in a molecule fixed set of axes. The $\varepsilon_{2, m}(\phi)$ depend on the anisotropic intermolecular potential and their ϕ dependence is obtained by expressing them as a tensorial sum of ϕ dependent contributions $\varepsilon_{2, p}^{j}$ from individual rigid fragments of the molecule [6]. Thus,

$$
\begin{equation*}
\varepsilon_{2, m}(\phi)=\sum \varepsilon_{2, p}^{j} D_{p, m}^{2}(\alpha(\phi), \beta(\phi), \gamma(\phi)), \tag{3}
\end{equation*}
$$

so that the ϕ-dependence has been transferred to the arguments of the Wigner rotation matrix elements $D_{p, m}^{2}(\alpha(\phi), \beta(\phi), \gamma(\phi))$ which relates the orientation of the j th fragment to the reference frame in which the $\varepsilon_{2, m}(\phi)$ are expressed.

For 5 CB we locate the reference frame $x y z$ as shown in figure 1 since in this frame only diagonal terms $S_{\alpha x}(\phi)$ appear in equation (1) for the dipolar couplings between the protons in the biphenyl group. This means that we need consider only interaction tensor elements $\varepsilon_{2,0}(\phi)$ and $\varepsilon_{2,2}(\phi)$, which are obtained from $\varepsilon_{2,0}^{\mathrm{R}}$ and $\varepsilon_{2,2}^{\mathrm{R}}$, the average of the interaction tensor elements for each of the phenyl rings. Note that all of these tensor elements have magnitudes determined in part by the alkyl chain contributions to the intermolecular potential, but it is not necessary to know the individual contributions to these composite interaction tensors.

The value of $p(\phi)$ is related to $V(\phi)$ and $U_{\mathrm{ext}}(\phi, \beta, \gamma)$ by,

$$
\begin{equation*}
p(\phi)=Z Q^{-1} \exp \{-V(\phi) / k T\} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
Z=\int \exp \left\{-U_{\mathrm{ext}}(\phi, \beta, \gamma) / k T\right\} \sin \beta d \beta d \gamma \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\int \exp \{-V(\phi) / k T\} \exp \left\{-U_{\mathrm{ext}}(\phi, \beta, \gamma) / k T\right\} \sin \beta d \beta d \gamma d \phi \tag{6}
\end{equation*}
$$

Figure 1. Atomic labelling and axes used for 5CB.

2. Analysis of the data

Sinton et al. [4] give the results of two analyses of their multiple quantum spectra, which differ in the permutation symmetry assumed for the proton spins. When the two phenyl rings are considered to be different (D_{2} symmetry) the dipolar couplings obtained imply distortions from regular hexagonal structures which are unbelievably large. The analysis which assumes the two rings to be identical (D_{4} symmetry) gives a more reasonable set of dipolar couplings and these are used in our analyses. We should note, however, that adopting the D_{2} set leads to distorted rings, but to virtually the same conclusions about the inter-ring angle.

We precede by first using the dipolar couplings between protons within each ring to determine the proton coordinates relative to axes fixed in each ring; this is achieved without any assumptions being necessary about the inter-ring potential or the separation between the protons in different rings. The relative proton coordinates in each ring were kept fixed in all subsequent calculations at the values shown in table 1. The inter-proton distances obtained have the same ratios to r_{35} as those obtained by Sinton et al. [4].

We have also repeated the kind of analyses carried out by Sinton et al. to determine $\phi_{\min }$, that is by adopting the RIS approximation. The dipolar couplings depend on two local order parameters, $S_{z z}$ and $S_{x x}-S_{y y}$, and varying these together

Table 1. Inter-proton distances $r_{i j}$ between nuclei in the same phenyl ring of 5 CB from analysis of the inter-proton dipolar couplings assuming that the two rings are structurally equivalent.

$$
\begin{aligned}
& r_{23}=r_{56}=r_{2^{\prime 3}}=r_{5^{\prime} 6}=2 \cdot 473 \AA(2 \cdot 47) \dagger \\
& r_{35}=r_{3^{\prime} s^{\prime}}=4 \cdot 299 \AA(4 \cdot 299) \ddagger \\
& r_{26}=r_{2^{\prime} 6^{\prime}}=4 \cdot 262 \AA(4 \cdot 27)
\end{aligned}
$$

[^0]Table 2. Observed and calculated dipolar couplings, the inter-ring angle $\phi_{\min }$, the inter-ring separation $\left(z_{2}-z_{2^{\prime}}\right)$, and the order parameters $S_{z z}$ and $S_{x x}-S_{y y}$ obtained by analysing the data of Sinton et al. [4] for 5CB, assuming D_{4} symmetry, and a single set of minimum energy, symmetry related structures.

i, j	$D_{i j} / \mathrm{Hz}$		$\Delta D_{i j} / \mathrm{Hz}$
	Observed	Calculated	
2, 3	-4478	-4478.1	-0.1
3, 6	47	47.0	$0 \cdot 0$
3, 5	380	$380 \cdot 1$	$0 \cdot 1$
3, 3^{\prime}	- 147	-133.7	13.3
3, 2^{\prime}	-365	-367.0	-2.0
2, 6	390	390.0	$0 \cdot 0$
2, 2^{\prime}	- 1741	- $1740 \cdot 9$	$0 \cdot 1$
$\left(z_{2}-z_{2}\right) / \AA=1.988(1.98) \dagger$			
$\phi_{\text {min }} / \mathrm{deg}=30.2 \pm 0.2(30.4 \pm 0.2)$			
$S_{z z}=0.564$ (0.565)			
$S_{x x}-S_{y y}=0.077(0.071)$			

with $\phi_{\min }$ and $r_{22^{\prime}}$ to minimize the difference between observed and calculated $D_{i j}$ gave the results shown in table 2. Again, as expected, our results are essentially identical with those of Sinton et al., and we present them here to facilitate comparison with our analysis of the data by the method introduced by Emsley, Luckhurst and Stockley [6], which we shall refer to as the ELS method. In particular, we show in table 2 the individual calculated dipolar couplings and the differences

$$
\begin{equation*}
\Delta D_{i j}=D_{i j}(\text { experimental })-D_{i j}(\text { calculated }) \tag{7}
\end{equation*}
$$

This reveals that almost all the error is contained in $\Delta D_{3,3^{\prime}}$. To analyse the data by the ELS method it is necessary to adopt a model for $V(\phi)$, and we use a cosine expansion with the minimum number of terms dictated by symmetry,

$$
\begin{equation*}
V(\phi)=V_{0}+V_{2} \cos 2 \phi+V_{4} \cos 4 \phi \tag{8}
\end{equation*}
$$

where the term independent of ϕ is included so that the minimum value of $V(\phi)$ is zero. The averaging of the $D_{i j}$ over the bond rotation is done by taking 91 points equidistant in ϕ, and finding the values of $V_{q}, \varepsilon_{2,0}^{\mathrm{R}}, \varepsilon_{2,2}^{\mathrm{R}}$ and $z_{2}-z_{2}$, which minimize the difference between experimental and dipolar couplings; note that there are five independent parameters to fit to seven dipolar couplings. The results, which are given in table 3 , show that the potential now has a minimum at $38 \cdot 4 \pm 0 \cdot 1^{\circ}$. The ELS model does give a smaller rms error, but not appreciably so, and again the error is concentrated in $D_{3,3^{\prime}}$, which has $\Delta D_{3,3^{\prime}}$ about five times larger than the experimental error. The residual may be a consequence of choosing the truncated Fourier form for $V(\phi)$, although including a V_{8} term did not lead to any improvement, and we have not explored larger departures of $V(\phi)$ from the form given by equation (8) since it is also possible that the failure of any of the models considered for $V(\phi)$ to fit $D_{3,3}$ more closely could be a combination of the use of an over simplified model for $U_{\text {exi }}(\phi, \beta, \gamma)$ and the neglect of small amplitude vibrational motion [7].

Table 3. The difference between observed and calculated dipolar couplings, the Fourier coefficients V_{q}, the inter-ring angle $\phi_{\min }$, the inter-ring separation $z_{2}-z_{2^{\prime}}$, and the interaction parameters $\varepsilon_{2,0}^{\mathrm{R}}$ and $\varepsilon_{2,2}^{\mathrm{R}}$ obtained by analysing the data of Sinton et al. [4] by the ELS method.

i, j	$\Delta D_{i j} / \mathrm{Hz}$
2,3	0
3,6	-1
3,5	-1
$3,3^{\prime}$	0
$3,2^{\prime}$	-3
2,6	0
$2,2^{\prime}$	
$\left(z_{2}-z_{2^{\prime}}\right) / \AA=1.82 \pm 0.01$	
$V_{0} / \mathrm{kJ} \mathrm{mol}^{-1}=1.83 \dagger$	
$V_{2} / \mathrm{kJ} \mathrm{mol}^{-1}=-1.51 \pm 0.19$	
$V_{4} / \mathrm{kJ} \mathrm{mol}^{-1}=1.66 \pm 0.23$	
$\varepsilon_{2}^{R} / \mathrm{kJ} \mathrm{mol}^{-1}=6.98 \pm 0.01$	
$\varepsilon_{2,2}^{\mathrm{R}} / \mathrm{kJ} \mathrm{mol}^{-1}=1.75 \pm 0.08$	
$\phi_{\text {min }}=38.4 \pm 0.1^{\circ}$.	

\dagger A finite V_{0} is included so that $V(\phi)$ is zero at the minima.
Table 4. Angles of twist $\phi_{\text {min }}$ found for the rings in some NCB and NOCB compounds.

Compound	Phase	$\phi_{\text {min }} /$ deg.	Reference
$10 C B$	Nematic \dagger	36	$[9]$
$10 C B$	Solid	40	$[13]$
3 CB	Solid	43	$[14]$
4 CB	Solid	40	$[15]$
5 CB	Nematic	38	This work

\dagger Over a temperature range of $20^{\circ} \mathrm{C}$ in the nematic phase.
The value obtained for $\phi_{\min }$ when using the ELS model is now closer to those obtained for biphenyls in the gas phase by experiment [2], or by calculation [8]. There is no report of a determination of the structure of 5 CB in the solid phase, but there have been investigations of the crystal structures of a number of NOCB molecules, and the twist angles found are compared with that determined here for 5CB in table 4. We also include in table 4 the value obtained for 1OCB in the nematic phase by an analysis of the dipolar couplings by the ELS method [9]. For this compound the form derived for $V(\phi)$ is independent of temperature over the whole of the nematic range.

The ϕ dependence of $U_{\text {ext }}(\phi, \beta, \gamma)$ is such that the small biaxial order parameter $S_{x x}-S_{y y}$ changes with ϕ, as shown in figure 2 , but $S_{z z}$ is invariant to the bond rotation. Note too that the relatively weak ϕ dependence of $U_{\text {ext }}(\phi, \beta, \gamma)$ means that the probability distribution $p(\phi)$ given by equation (4) changes by only a small amount on going isothermally from nematic to isotropic phases, so that the value derived for $\phi_{\min }$ is appropriate for both liquid-crystalline and isotropic phases.

One further confirmation that the analysis of the dipolar couplings by the ELS method is giving a more realistic geometry for 5 CB is that the inter-ring separation, as measured by $z_{2}-z_{2}$, the distance apart of the protons on sites 2 and 2^{\prime}, is

Figure 2. Variation of $S_{x x}-S_{y y}$ with ϕ calculated with the ELS model.
determined to be $1.82 \AA$, in good agreement with values found for a number of substituted biphenyls [4]. In contrast, the analysis of the data by adopting the RIS approximation gives $z_{2}-z_{2}$ as $1.98 \AA$ [4].

3. Conclusion

The analysis of the dipolar couplings for 5 CB shows that $V(\phi)$ has a minimum close to the values determined for other, non-sterically hindered substituted biphenyls in the gas phase [10-12], for 1OCB in the nematic [9] and solid [13] phases, and for solid samples of 3 CB [14] and 4CB [15]. It would appear, therefore, that the weight of the available evidence supports the view that the angle of twist of the phenyl rings in liquid crystals containing the biphenyl group does not change appreciably on changing phase. Clearly these results cast doubt on the method used by Proutiere et al. [3] to investigate changes in $\phi_{\min }$ produced by changing from a solution in carbon tetrachloride to the solid phase which give changes by up to 40° for some members of the NCB series.

References

[1] Trotter, J., 1961, Acta crystallogr., 14, 1135.
[2] Almenningen, A., Bastiansen, O., and Fernholt, L., 1985, J. molec. Struct., 128, 59.
[3] Proutiere, A., Legoff, D., and Chabanel, M., 1989, Molec. Crystals liq. Crystals, 167, 39.
[4] Sinton, S. W., Zax, D. B., Murdoch, J. B., and Pines, A., 1984, Molec. Phys., 53, 333.
[5] Emsley, J. W., and Luckhurst, G. R., 1980, Molec. Phys., 41, 19.
[6] Emsley, J. W., Luckhurst, G. R., and Stockley, C. P., 1982, Proc. R. Soc. A, 381, 117.
[7] Diehl, P., 1985, NMR of Liquid Crystals, edited by J. W. Emsley (Reidel).
[8] Jaime, C., and Font, J., 1989, J. molec. Struct., 195, 103.
[9] Emsley, J. W., Horne, T. J., Zimmermann, H., Celebre, G., and Longeri, M., 1990, Liq. Crystals, 7, 1.
[10] Almenningen, A., Bastiansen, O., Fernholt, L., Gundersen, S., and Kloster-Jensen, E., 1985, J. molec. Struct., 128, 77.
[11] Almenningen, A., Bastiansen, O., Gundersen, S., Samdal, S., and Skancke, A., 1985, J. molec. Struct., 128, 95.
[12] Bastiansen, O., and Samdal, S., 1985, J. molec. Struct., 128, 115.
[13] Walz, L., Paulus, H., and Haase, W., 1987, Z. Kristallogr., 180, 97.
[14] Haase, W., Paulus, H., and Pendzialek, R., 1983, Molec. Crystals liq. Crystals, 100, 211.
[15] Vani, G. V., 1983, Molec. Crystals liq. Crystals, 99, 21.

[^0]: \dagger Values in parentheses are those obtained by Sinton et al. [4]. \ddagger Fixed.

